Existing Systems

- **Academic Efforts**
 - University Research
 - Work contributing to the Autonomic computing systems beyond IBM’s laboratories.
 - Few Research Projects include
 - OceanStore - UC Berkeley Computer Science Division
 - Kinesthetics @Xtreme (KX) - Columbia University
 - The Horus Project - Cornell University
 - Arthax - Department of Computer Science, University of Bologna, Italy
 - Software Rejuvenation – Duke University
 - eBiquity - University of Maryland Baltimore County
 - Recovery Oriented Computing - UC Berkeley / Stanford
 - Autonomia – University of Arizona

- **Industry Efforts**
 - IBM committed focus to working within its own global labs and researchers.
 - Gryphon: Pub/Sub
 - Smart-Self Managing and Resource Tuning DB2
 - Sabio
 - Storage Tank
 - Odoano
 - Smart Grid
 - Microsoft Research
 - AutoAdmin
OceanStore

- **Definition**
 - A utility infrastructure designed to span the globe and provide continuous access to persistent information.

System Architecture

- **Naming and Access Control**
 - GUID (Naming)
 - Reader and Writer Restriction.

- **Data Location and Routing**
 - Fast Probabilistic Routing Algorithm (Self-Optimizing)
 - Slower, reliable hierarchical routing method (Plaxton Scheme)
- **Self healing, Self optimizing and Self Managing**
- **Update Model**
 - Managed by a series of replicas' Master, Primary and Secondary tier of replicas.

- **Durable Storage**
 - Active Data in floating replicas.
 - Archival Data in Erasure Coded fragments.

OceanStore Autonomic Features

- **Autonomic and Dynamic Optimization** Self-optimization
- **Monitoring and adaptation of routing substrate** Self-configuration
 - Optimization of Plaxton Mesh
 - Adaptation of second-tier multicast tree

- **Continuous monitoring of access patterns** Self-Healing
 - Enhance performance through pro-active movement of data

- **Continuous testing and repair of information** Self-protection
 - Automatic replication for disaster recovery
 - Diagnosis and repair of routing and location infrastructure
Columbia’s Programming Systems Lab (PSL)

- How can we construct self-managing, self-configuring, self-healing, self-protecting, context-sensing and continuously self-optimizing systems from legacy components?
- Augment system-of-systems with a decentralized decision & control mechanism that can specify and manage both local optimizations and full-system reconfigurations
 - Decentralized process/workflow definition and enactment
- Retrofitting Autonomy
 - Approach to autonomizing legacy systems and assembling autonomic systems-of-systems
 - Enable autonomic properties through a solution orthogonal to the legacy systems’ main business logic and communication framework
- Common External Infrastructure
 - Four-layer infrastructure
 - Probes
 - Gauges
 - Coordinated Effectors
 - Architectural Model-based Analysis & Decision

Architecture of the Common Infrastructure

- Columbia PSL’s implementation of Common Infrastructure
- KX is being applied for load balancing, etc. in Telecom Italia Lab’s heterogeneous instant messaging and ISI’s open information geographical analysis system (GeoWorlds).
The Anthill Project

- The Anthill project builds on the similarities between P2P systems and social colonies of ants.
- Anthill construct P2P services that exhibit resilience, adaptation and self-organization properties.

Ant Colony Algorithms

- **Agent Based**
 - Artificial Ants of limited individual capabilities move across network of nodes trying to solve a particular problem.
 - While moving they build partial solutions and modify the problem representation by adding collected information.
- **Complex Adaptive**
 - Individual ants are unintelligent and have no problem solving capability.
 - Nevertheless ant colonies manage to perform several complicated tasks.

A Parallel between Ant Colonies and Anthill

- Anthill infrastructure composed of self-organizing overlay network of nests (N1 to N6).
- Applications perform requests and listen for replies through its local nest.

Anthill’s Autonomic Properties

- Ants are autonomous agents capable of
 - Moving across a network
 - Interacting with the nest they visit to pursue their goals.
 - Characterized by their algorithm (“species”).
 - Behavior of an ant may be
 - non-deterministic (probabilistic).
 - Depends on its algorithm and its current state.
- **Evolutionary Framework (Autonomic Nature)**
 - Anthill exploits “nature” metaphor using evolutionary techniques
 - Genetic Algorithms in tuning ant algorithms.
 - Minimization of the total path length traversed by ants.
 - Investigates can genetic algorithms be applied at runtime ??
 - Neats could “ideal” algorithms and parameters of existing ants.
 - Crossover and mutation techniques for generating new ants.
Software Rejuvenation

- Proactive fault management technique aimed at preventing crash failures and performance degradation
 - Involves occasionally stopping the running software, “cleaning” its internal state and restarting it
 - Counteracts the aging phenomenon
 - Frees up OS resources
 - Removes error accumulation
 - Garbage collection, defragmentation, flushing kernel and file server tables etc.

Software Rejuvenation reduces downtime

Granularity of Rejuvenation

Level 1 rejuvenation
- Restart service
 - Only when stoppage of service saves necessary states

Level 2 rejuvenation
- OS reboot
- Application failover and recovery by cluster management software

Approaches to Rejuvenation and Examples

- Open loop – periodic
 - No feedback from the system
- Closed loop (feedback control)
 - Feedback from the system (monitoring)

- Applications
 - AT&T billing applications
 - Software capacity restoration
 - On-board preventive maintenance for long-life deep space missions (NASA’s X2000 Advanced Flight Systems Program)
 - Patriot missile system software - switch off and on every 8 hours
 - IBM Director Software
 - Process Recycling in IIS 5.0
Recovery-Oriented Computing (ROC)

- Philosophy: “If a problem has no solution, it may not be a problem, but a fact, not to be solved, but to be coped with over time” — Shimon Peres ("Peres’s Law")
 - People/MSW/SW failures are facts, not problems.
 - Recovery/repair is how we cope with them.
- Improving recovery/repair improves availability.
 - Unavailability = AFITRMTT
- Five "ROC Solid" Principles
 - Given errors occur, design to recover rapidly.
 - Given humans make errors, build tools to help operator find and repair problems.
 - Error Prevention (apart from design)
 - Detect or detect failures quickly and in context.
 - Any new messages for HW or SW can be routinely invoked, scripted for regression tests.
- Three R’s for recovery
 - Roll: change system to prevent failure.
 - Repair: change system state forward, replaying end-user interactions lost during rewind.
 - Replay: not system state backwards in time.

FIG: Fault Injection in glibc

- Objective:
 - Develop a tool for injecting faults at the system boundary
- Motivation:
 - Developers are lazy
 - We need testing tools that generate a wide variety of unexpected faults
- Implementation
 - This stub library between app & libc
 - Traps API calls
 - Logs them
 - Inserts faults
 - Can be inserted into any app without modification
 - Uses LD_PRELOAD environment variable.

FIG: Implementation

Pinpoint

- Motivation
 - Systems are large and getting larger
 - Systems are dynamic
 - Difficult to diagnose failures
- Pinpoint Approach Version 1
 - Three R’s for recovery
 - Roll: change system to prevent failure.
 - Repair: change system state forward, replaying end-user interactions lost during rewind.
 - Replay: not system state backwards in time.
- Implementation
 - Built on top of JEE platform
 - Version 2 of Pinpoint
 - Based on JEE, J2EE, thick stubs, wrappers for EJB, J2EE, JDBC, other libraries, thin stub.
 - Logs every component used in request
 - Record success/failure of requests
 - Faults detected
 - Send root cause to end-user interaction
 - Applications knowledge only for end-to-end failure
 - Requires no application code changes
 - Can be used as dynamic dependency graphs
 - Can be inserted into any app without modification
 - Uses LD_PRELOAD environment variable.
UMBC eBiQuity Research Group

- Explores the interactions between mobile, pervasive computing, multi-agent systems and artificial intelligence, and e-services.
- Few Projects
 - Agents2Go
 - Anamika: Service Composition in Ad-hoc Environments
 - OWLIR: Information Retrieval On The Semantic Web
 - Allia
 - An Agent Based Distributed Computing System using XReggie and Ronin
 - SweetJess
 - UMBC OntoMapper: A Tool For Mapping Between Two Ontologies
 - Learning to Tag: Generating DAML mark up for Semistructured Documents
 - MoGATU: Profile-Driven Data Management in Pervasive Environments.

Agents2Go

- Infrastructure Location-Dependent Service Discovery in Mobile Electronic Commerce.
- Automatically obtains a user’s current geographical location in CDPD (Cellular Digital Packet Data)
 - without relying on GPS
- Communities of software agents called agencies
 - provide information services and e-commerce support
- Components of the Agents2Go
 - PalmApp
 - Agents2Go Server
 - Centaurus Communication Protocol (CComm)
 - Locator
 - Agents2Go Information Repository
 - Restaurant Brokers
 - Participating Restaurant Agents.

Anamika

- Reactive Service Composition for Pervasive Computing Environments
- Components
 - Internet Layer
 - Multi-CDPD Service Discovery
 - Dynamic Service Discovery
 - Peer-to-Peer service discovery
 - Semantic description-based service matching (DAML + OIL)
 - Dynamic Caching of neighboring service descriptions
- Service Composition Layer
 - DAML-S
 - Service Execution Layer
- Application Layer
 - Dynamic Broker Selection Technique
 - Broker Arbitration and Delegation
 - Service Integration and Execution
 - Fault Recovery

User Interaction with the Anamika System

System Components in the Anamika Reactive Service Composition Environment
OWLIR

- Approach to retrieval of documents containing free text and semantically enriched markup.
- OWLIR consists:
 - Set of ontologies
 - Ontology: explicit specification of a representational vocabulary for shared domain of discourse.
 - Event Ontology
 - Extension of ITTalk ("Natural Kinds of").
 - Text Extraction
 - Aera/Text System,
 - Extracts key phrases & elements from free text docs.
 - Information Retrieval
 - DAMLJessKB reads DAML + OIL files.
 - Inference System
 - Hopkins Automated Information Retriever for Combing Unstructured Text (HAIRCUT),
 - Document modeling approach to reasoning document similarity.
 - Information retrieval
 - Event Ontology
 - Text Extraction
 - DAMLJessKB reads DAML + OIL files.
 - Information retrieval
 - Hopkins Automated Information Retriever for Combing Unstructured Text (HAIRCUT),
 - Document modeling approach to reasoning document similarity.

Sabio

- Sabio takes large collections of documents within an enterprise and breaks them down automatically into a taxonomy.
 - without aid by human categorizers.
 - Automated Taxonomy Generator as it is called in Raven.
- employs Bayesian statistics
 - educated guess
- decompose each document into a collection of "tokens".
- assembles a collection of relevant words and phrases in all the documents.
- treats this collection mathematically as points in a huge multidimensional space.
 - each dimension corresponds to a single word or phrase.
 - number of times the word or phrase appears determines how far out along the dimension the point lies.
- 2 documents which share many of the same words and phrases relatively close together in this multidimensional space.
- Combined with the Lotus Product
 - ability to bring order to the most chaotic set of corporate e-documents.

Horus Project

- A framework for development of distributed applications based on group communications.
 - Redesign of the Isis group communication system
 - fault-tolerant systems
 - managed distributed systems
 - applications that exploit data replication or coherent caching, and groupware.
- Virtual synchrony
 - Runtime model for data replication and fault-tolerance
- Ensemble
 - New version of Horus written in ML.
 - will be an outstanding environment for building Java-based groupware applications that do multimedia conferencing on the Web.
Architecture

Object Group Communication in Electra
Electra is a CORBA’s Object Request Broker (ORB)
Plug and Play Approach to Group Computing
Unix system calls are intercepted by Horus using an intercept proxy

Gryphon

- Publish/subscribe middleware aimed at distributing large volumes of data in real time.
- Features
 - Topic based and content based publish/subscribe
 - Publish/subscribe system deployed on a public network cannot depend on homogenous router technology.
 - Use of tcp/ip or http.
 - Scale support to application growth.
 - Provide security and privacy features to a degree not mandated over private secured networks.
 - Client authentication, access controls and encryption/integrity of messages.
- Implementation
 - Java Message Services (JMS) API.
 - Patented Matching Engine provides high speed content filtering.

SMART DB2

- The DB2 SMART project aims to create technology for reducing human intervention and cost in DB2 operation.
- It builds on and extends existing self-managing technologies in DB2.
 - Adjust every configuration parameter dynamically while the system is in use
 - Expand and shrink memory usage, based on workload
 - Automatically profile workloads and recommend and create indexes, partitioning, clustering, summary tables, and so on to improve performance
 - Automatically detect the need for, estimate the duration of, and schedule maintenance operations such as reorganization, statistics collection, backup, copy, and reload
 - Observe actual performance and exploit that information to improve operations
 - Recommend action when the performance isn’t meeting the DBA’s expectations
 - Predict problems such as low memory or constrained disk space and notify someone by pager or email in advance.
DB2’s Autonomic Features

- **Query Optimizer**
 - Automatically determines the best way to execute a declarative SQL query.

- **Automatic selection of degree of parallelism**
 - Setting and adjusting degree of parallelism for queries and utilities.

- **Detection of partial disk writes.**
 - Protects data integrity by automatically detecting any corrupted data from incomplete I/O's.

- **Application Control and Tuning**
 - **Query Patrolter**
 - “Predictive Governer” uses the “Query Optimizer” estimate of relative resources for each query to limit surges of arriving or long running queries.
 - **Reactive Governer** monitors the actual resources consumed to prevent runaway queries.

- **Performance Expert.**
 - Performs passive monitoring and collects trace and monitor data in a performance data warehouse.
 - **Buffer Pool Analyzer**
 - Collects buffer pool activity and models changes to the objects in the buffer pools

AutoAdmin

- **Self Tuning and Self Administering Databases.**
- Enabling databases to track the usage of their systems and to gracefully adapt to application requirements.
- **Bottom up approach**
 - Choose appropriate physical objects and their organization
 - Materialized Views
 - Statistics
 - Goal: Optimize performance

Astrolabe

- **Astrolabe is an information management service.**
 - Virtual system wide, hierarchical database evolves as the underlying information changes.
 - Relational database built using peer-to-peer protocol.
 - Ability to perform Data mining and data fusion
 - Continuously computes summaries using on-the-fly aggregation.
 - Self configuration, Distributed monitoring and control adaptation.
Storage Tank

- SAN-based multiplatform distributed file system and storage management solution
 - Flexible access to storage and data
 - Shared heterogeneous (multiplatform) data storage
 - Enhanced performance and administration of SAN technologies
 - Mission-critical availability of data, servers and applications
 - High availability of servers and data
 - Global namespace and single system view
- Storage Tank attributes
 - Containers
 - Any collection of one or more volumes
 - Storage Tank Protocol
 - Aggressive caching at client
 - Retention of modified metadata, data and lock state beyond close-of-file by an application
- Storage Tank Client
 - File System Interface
 - Client State Manager
 - Operating System Services

Océano Project

- "Computing Utility Powerplant"
- "FARM" of massively parallel, densely-packaged servers interconnected by high-speed switched LANs
- High levels of automation to dynamically adjust web sites to actual traffic demands
- Implements infrastructure enabling large numbers of hosted customers
- Reduce the costs of setting up and operating hosting farms through automation
- Objectives
 - Dynamically assign resources to accommodate planned and unplanned fluctuation of workloads
 - Offer a wide variety of services levels to customers
 - Secure sharing of resources across multiple customers
 - Provide adequate reliability through massive redundancy, and automated re-provisioning
- Resource Allocation
 - Collects and utilizes SLA data
 - Monitors and processes SLA policies
 - Provides a scalable framework for monitoring resource availability
 - Provides application metric collectors for some standard e-commerce software packages
- Dynamically allocation according to the load

Autonomia

- AUTONOMIA environment provides the application developers
 - Tools required to specify the appropriate control and management schemes
 - Core autonomic middleware services
- Self-Configuring Engine
 - Responsible for configuring/re-configuring the applications on the ad
 - Chooses the appropriate policy specified by the self-configuring profile to configure the application
- Self-Optimizing
 - Optimize application as well as system performance at runtime
 - Handler selects appropriate mechanisms to optimize application performance
- Self-Protecting Handler
 - Uses the idea of intention list to make decisions on the fly about access control to various tasks
Smart Grid

- OptimalGrid is a project in the distributed systems department at the IBM Almaden Research Center designed to solve the next generation of large scale parallel problems on a large number of network-attached, heterogeneous compute nodes (i.e. "The Grid").
- OptimalGrid automates aspects of solving a large scale "connected problem" on a computing Grid.
- To enable this Grid compute utility model
 - Autonomic Load Balancing.
 - Adapt problem units to dynamic changes in available computing resources
 - Manage correlations between the problem units
 - Establish micro-billing mechanisms.

Attacking an FEM Grid Problem

- Domain Expert partitions problem (partitions space) into "Original Problem Cells" (OPCs)
 - Data
 - Methods
 - Neighbor pointers for inter-cell interactions
 - Boundary
 - State
- Collection of OPCs is grouped into a "Compute Unit" called a Variable Problem Partition (VPP)
Smart Grid Prototype

- Major components:
 - Autonomic Program Manager (APM)
 - Variable Problem Partitions (VPP) (collections of OPCs)
 - Computing Agents (CA)
 - Autonomic Rule Engine (ARE)
 - Micropayment Broker (MPB)
 - UDDI Server (Universal Description Discovery Integration)
 - OSGi (Open Services Gateway Initiative)

- Component Roles:
 - APM employs the ARE and manages CAs
 - CAs run VPPs, communicating with other VPPs (CAs) through some mechanism.
 - CAs log performance data that is used by the ARE to adjust the VPP sizes (allocations) for each of the CAs.

The Optimal Grid Architecture
Conclusions

- Existing Systems can be divided into
 - Systems which Address Autonomic properties
 - SMART
 - AutoAdmin
 - Anthill
 - Software Rejuvenation
 - Help to build systems which address these properties.
 - eBiquity’s Research
 - Gryphon
 - Columbia’s Programming Systems Lab (PSL)
 - The Horus Project
 - Autonomia

- Systems could address specific issues of the 8 Elements of Autonomic Computing.

References

References Contd..